
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 20, 1163-1 178 (1995) 

FINITE ELEMENT SOLUTION OF THE EQUATIONS GOVERNING 
THE FLOW OF ELECTROLYTE IN CHARGED MICROPOROUS 

MEMBRANES 

A. E. JAMES 
Department of Chemical Engineering, UMIST, PO Box 88, Manchestec UK.  

AND 

J. D. STILLMAN and D. J. A. WILLIAMS 
Department of Chemical Engineering, University of Wales Swansea, Swansea SA2 8Pl: U K .  

SUMMARY 

Electrical double-layer effects are unimportant in flows through porous media except when the Debye length ) ~ - l  
is comparable in magnitude with the pore radius a. Under these conditions the equations governing the flow of 
electrolyte are those of Stokes, Nemst-Planck and Poisson. These equations are non-linear and require numerical 
solution. The finite element method provides a useful basis for solution and various algorithms are investigated. 
The numerical stability and errors of each scheme are analysed together with the development of an appropriate 
finite element mesh. The electro-osmotic flow of a typical electrolyte (barium chloride) through a uniformly 
charged cylindrical membrane pore is investigated and the ion fluxes are post-computed from the numerical 
solutions. The ion flux is shown to be strongly dependent on both zeta potential and pore radius, KU, indicating the 
effects of overlapping electrical double layers. 
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1. INTRODUCTION 

Membranes are of great utility in many industrial separation processes. In water treatment they may be 
used for purification by removing unwanted ionic species and fine particles, while in biological 
processes they may be used to concentrate a chosen ionic species or solid of commerical value. 

Typically a membrane allows the passage of an aqueous electrolyte through capillary pores with 
submicron equivalent diameters. The capillary pores may be produced by the irradiation of sheets of 
polymer or the packing of fine fibres or particles in a suitable assembly.' Electrolyte flow through 
membranes is a complex process, being influenced not only by the diameter of the capillary pore but 
also by the membrane material and the ions present within the ele~trolyte.'-~ Further complications are 
introduced by the presence of dispersed colloidal material. Electrolyte flow through a membrane may 
be driven either by pressure or by an electrical potential. Thus it is self-evident that improved design 
and operational procedures for membrane separation processes can only result from fundamental 
understanding of the chemical physics of the electrolyte flows on length scales appropriate to 
membranes. 
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In the presence of an aqueous electrolyte, membranes can possess a surface electrical charge which 
will give rise to the formation of an electrical double layer caused by the dynamical partition of ions of 
similar and dissimilar charge to the surface. Discussions of the origin of this charge and the absorption 
of the lyaer of ions onto the charged surface (the Stem laye?i3) are beyond the scope of the present 
study and readers are referred to standard texts on colloid Outside the layer of bound ions 
the diffuse electrical double layer develops, the extent of which is characterized by the Debye length 
K-' (defined by equation (10)). The Debye length is a function of ionic charge and concentration and 
typicall K - I  < 1000 A. The diffuse double layer is mobile and for electrokinetic flows the transition 
between the fixed and mobile layers is termed the slippig plane.2 The notion of the existence of the 
slipping plane provides a suitable datum for both hydrodynamic and electrical boundary conditions. In 
flows through porous media the existence of the electrical double layer is unimportant when the ratio of 
the electrical double-layer thickness to the pore radius is much less than unit. However, when this ratio 
is O( I ) ,  the double layers start to overlap, giving rise to an electroviscous effect. Further, when the 
capillary radius is small compared with K - ~ ,  the possibility of ion rejection exists and flux of certain 
ions through the membrane will be reduced. 

Comparatively little theoretical attention has been given to the analysis of electrolyte flows in 
membranes,' which requires the solution of a complex set of differential equations for the simplest 
model Analytical solutions are possible, but the severe restrictions necessary in their 
formulation limit their usefulness in the prediction of flow chara~teristics.'-'~ Preliminary studies of 
the effects of pore shape have been made using a combination of analytical and collocation 
meethods. ' ' , I 2  Although these studies were restricted to binary symmetrical electrolytes with uniform 
ionic mobility and uniform surface charge distribution, some allowance for non-uniformity of the pore 
wall was made by allowing a periodic variation in the surface charge. An obvious shortcoming in the 
majority of previous investigations is the neglect of the more intriguing aspects of real electrolyte 
flows. Studies should recognize that some electrolytes are asymmetric while others are complex 
mixtures of ions, each having its own ionic mobility. The effects of a non-uniform distribution of 
charge and variable pore shape should be considered in more detail. In contrast with earlier work, we 
consider a flexible numerical scheme that may be used for detailed investigation of electrolyte flow in 
charged pores where non-uniform distributions of material properties and irregular geometry are of 
special interest. The equations governing electrolyte flow are those of Stokes, Poisson and Nemst- 
Planck (NP).4 These equations are strongly non-linear, although the Stokes and Poisson equations are 
linear if the space charge density p is constant. In general, numerical methods of solution are 
necessary. 

The present study describes the formulation of a finite element algorithm to solve the governing 
equations of electrolyte flow within a charged porous membrane. Lagrange finite elements are used in 
a Galerkin discretization. The resultant sets of non-linear equations are solved by iterative methods. 
The limitations on mesh size and the magnitude of the non-linearity through the boundary conditions 
are investigated. A series of simple test cases is used to validate the numerical model. Electrolyte flows 
and ion fluxes are calculated within a typical membrane pore and are applicable to electrolyte solutions 
of concentration less than 0.5 M. 

NUMERICAL ANALYSIS 

The governing equations are 

N h  = -dhVch = - -dhchVp zhe + C ~ V  (NP), 
kT 
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v2cp = -PE (Poisson), ( 2 )  
-Vp + pVq - pV x V x v = 0 (Stokes) 

and closure of equations (1H3) requires 

v . N~ = o (conservation of ion flux), 

V . v = 0 (conservation of volume), ( 5 )  

( 6 )  V . ( EE) = 0 (conservation of electrical flux density) , 
where N h  , dh , ch and zh are the flux, difisivity, concentration and valency (with the sign of the charge 
included) of ionic species h respectively, k is Boltzmann’s constant, T is the absolute temperature, e is 
the electronic charge, v is the velocity, E is the permittivity, E is the electrical field vector, cp is the total 
electrical potential in the pore, p is the pressure and p is the bulk viscosity. 

In order to illustrate the method adopted, we develop a numerical solution for dlectrokinetic flow 
within a charged cylindrical membrane pore in cylindrical co-ordinates. The pore is one of many 
whose axes are normal to the membrane face. A difference in voltage applied across the membrane 
produces an electrical field, inducing flow parallel to the axis of the pore. This electrical field vector 
contains only an axial component, so that the electrical potential within the pore is written as 

d.7 r )  = *(z7 r )  + Z E Z ,  (7) 

where z is the distance along the pore axis (see Figure l), II/ is the electrostatic potential within the 
electrical double-layer system and E, is the axial electrical field. The space charge density p within the 
pore is determined as 

where N, is Avogadro’s number. For a pore radius a when the double layer is thin ( K - ’  << a), bulk 
values of viscosity and concentration are expected along the axis of the pore as well as in the external 
electrolyte, since there is no overlap of the double layers within the pore. When K - ’ ,  the electrical 
double layers overlap and the ionic concentration will vary from the bulk value as predicted by the NP 
equation (1). In this instance the overlapping double layers also induce an apparent increase in 
viscosity, evident in reduced volumetric flow rates through the pore, which is known as the 
electroviscous effect.7 

The ionic strength I of the bulk electrolyte is a function of the bulk ionic concentrations and 
valencies of the individual ionic species and is given by 

h 

where ch(m) is the bulk concentration of ionic species h. The Debye length K - ~  is written as a 
function of I: 

It is now convenient to define 
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Inlet: / 

r' 
Figure 1. Uniformly charged capillary 

where P,is the characteristic velocity scale of the flows in the electrical double-layer system in the 
present work. 

Further, the non-dimensional form of equation (7) for the total electrical potential in the pore is 
written as 

@ ( Z , R )  = 9 ( Z , R )  - ZE,, (13) 

where E, = (e/KkT)E,. 

equation (1) into equation (4) allows one to write the working equation set as 
Introducition of the dimensionless quantities into equations (1H3) and (5) and substitutions of 

P -V2Ch - Zh(VCh. V @  + P O 2 @ )  = 2 V . V2Ch = 0 (NP), Kdh 

-VP+ ZhChV@ - V x V x V = 0 (Stokes), (16) 
h 

V . V = 0 (conservation of mass). (17) 

In equation (4), p,/Kdh is a Peclet number (Pe) indicating the relative importance of convection 
and conduction within the ion fluxes. We have found in general that Pe, 1, indicating a dominance 
of ion movement through diffusive conduction in the systems under study. However, values of Pe 
are not sufficiently small to warrant neglect of the convective terms in the ion flux equations. 
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The electro-osmotic flow is determined by solution of equations (13x17)  subject to the boundary 
conditions 

rn 

rn 
- 0, - = -E,, 

dZ 

_-  a* 

a9 

rn 
dR dR 

= o ,  -&= 0, az - -Ez, 
aCh - 0 ,  - a vz z=o :  v,=o, -- 

dZ dZ 

-0,  -- 
X h  - 0 ,  -- a v z  

dZ dZ 

-0,  -- ach 
- 0, = o ,  -- avr R = O :  V , = O ,  - 

dR 
er R = ua : V, = 0, V, = 0, 9 = - Ch(ua, Z) = C h ( w )  exp 

az Z=K1:  V,=o,  -- 

kT ' 

where l is the electrical potential at the slipping plane and Ch(m)/Z .  The last boundary condition for 
the ion concentration at the slipping plane (Ch(ua, Z)) is obtained by integrating the radial component 
of equation (1) at r = a, noting that N,h(a,z) = 0 and v,(a,z) = 0, and expressing the result in non- 
dimensional parameters. 

In the present work the governing equations are discretized and the resultant non-linear algebraic 
equations are solved iteratively. In order to work, this procedure requires some as priori knowledge of 
the distribution of ions within the pore. Evidently a likely initial condition would be the assumption of 
a uniform distribution of ions throughout the pore; in practice, however, it is more convenient to 
assume a Boltzmann distribution of ions with respect to the wall within the pore. Consequently the 
Poisson equation becomes the Poisson-Boltzmann (PB) equation, which is written non-dimensionally 
as 

and is subject to the boundary conditions 

er R = u a :  *=- a9 
R = O :  - 

aR'O kT ' 
a9 

Z = O a n d Z = K l :  -- - 0, az 
The PB equation is also non-linear and must be solved using the Newton-Raphson (NR) method. l 3  A 
trial solution to initiate the Newton sequence is obtained by solving the Debye-Huckel (DH) 
linearization of the PB equation. This is obtained by expanding the exponential term in equation (1 8), 
neglecting terms in and above and remembering that the overall electroneutrality of the bulk 
electrolyte demands that Ch z!Ch(m) = 0.. In the present work the linearized form is termed the 
DH-Poisson (DH-P) equation and is written as 

v2* = * (19) 

Equations (14H19) subject to their respective boundary conditions are the basis for our model of 
electrolyte flow through porous membranes. Their numerical solution can now be presented. 

FINITE ELEMENT PROCEDURES 

The Galerkin finite element method (FEM)I4 is used to discretize equations (14x19).  Since there are 
no unusual features in the FE methodology used in the present study, the element matrix equations can 
be readily determined and will not be presented therein. Similarly the global assembly and matrix 
solution algorithms are well documented and do not warrant detailed examination. For convenience 
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hereafter, we call the finite element discretization of a particular differential equation by the name of 
the parent differential equation. Unless otherwise stated, we refer to filly assembled global matrix 
equations into which have been introduced both essential and natural boundary conditions. We have 
used nine-noded Lagrangian finite elements to form the element matrices of the DH-P, PB, Poisson 
and NP equations. The Stokes and mass conservation equations are discretized using the so-called 
primitive variables method'* on noded Lagrangian elements (for velocity) with superimposed four- 
noded linear elements (for pressure). Various authors have shown that this combination of elements 
together with the primitive variables methodology can be readily applied in the successful solution of a 
broad range of Navier-Stokes flow Weakened pressure gradient terms enable the 
straightforward specification of pressure at any location." Picard iteration has been used to solve all 
the equations except the PB equation, which is solved by the Newton-Raphson (NR) method. The 
quasi-linearization of this equation and the use of Newton sequences in the subsequent solution of the 
linearized matrix equations have been fully described elsewhere." The global matrices are inverted 
using a frontal solver. 

VALIDATION OF GOVERNING EQUATIONS 

Herein numerical solutions of each differential equation (Stokes, DH-P, PB, Poisson and NP) are 
compared with an appropriate analytical result. For convenience we consider the binary symmetrical 
electrolyte whose properties are given in Table I. 

Figure 1 illustrates the test geometry and required boundary conditions. To investigate the effects of 
element size, a range of FE meshes employing Lagrange elements and 10, 50 or 100 equal radial 
divisions is used. The results obtained for each equation are summarized below. 

Stokes equation 

This is solved with respect to the boundary conditions ( V  = 0 at slipping plane, aV,/aR = 0 at 
capillary axis). The electrical field is set to zero and a pressure difference applied across the pore drives 
the flow. Comparison is made between the axial velocity component of the FE solution under these 
conditions and the theoretical parabolic profile written in dimensionless variables as 

V,(R) = Vf"" [ 1 - ($)*I 
where Vf"" is the velocity at the axis of the pore. Under creeping flow conditions the solution to 
equation (16) matches that of equation (20) within the accuracy of computer word length on all 
meshes. 

Poisson, Poisson-Boltzmann and DH-Poisson equations 

The numerical solution of these equations is sensitive to the magnitude of both e(/kT and Ica. For 
low slipping plane potentials (e[/kT << 1) in narrow capillaries the solution of equation (19) is 

Table 1. Properties of binary symmetrical electrolye 

Positive ions Negative ions 

Concentration Mobility Concentration Mobility 
(kmol m-3) VaIency (cm2 s-l V-' ) (kmol m-3) Valency (cm2 s-l v - ~ )  

I x 10-4 1 5 x  1 x 10-4 1 5 ~ 1 0 - ~  
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similar to that of equation (1 8). Herein 25 mV is taken to the limiting value of ( for similar solutions to 
equations (1 8) and (1 9) (i.e. e(/kT = 1) and this value was used for test purposes with pores having 
radii 5 0.05 pm. 

The radial solution of equation (19) for a long, uniformly charged cylindncal pore is given in terms 
of Bessel functions asI3 

where 100 is a Bessel function of the second kind, calculated in the present work from the algorithms 
presented by Abramowitz and Stegu2O 

Numerical values of @B deterimed by equation (21) are exact to six significant figures. Within the 
bounds of stability (discussed later) the solution to equation (19) always exceeds this resolution. 
Comparisons of results from equation (21) with those from equations (18) and (19) are interesting in 
that the solutions differ by a maximum pointwise value of 3.47% in a capillary with radius 
a = 0.05 pm. 

This value is maintained irrespective of the degree of radial mesh refinement, indicating the 
correctness of the numerical solution. 

Nernst-Planck equation 

For a long cylinder it is possible to analytically solve the radial component of the NP equation. The 
required solution is obtained under conditions where there is no hydrodynamic flow (i.e. V = 0). The 
subsequent integration (13) is straightforward subject to the boundary condition Ch = Ch(00) when 
Q = 0: 

Equation (22) predicts a Boltzmann distribution of ions in the radial direction. Insertion of equation 
(22) into the Poisson equation leads to an equation identical in form with the PB equation (18). A 
comparison between the results obtained for the PB equation and the solution to the NP equation in 
conjunction with both the Stokes and Poisson equations provides an estimate of the accuracy of the 
coupled equation set. Differences between the post-computed PB-based values for Ch and the values 
obtained from the NP equation exceed six-figure accuracy, thus verifying the NP equation under the 
test conditions. 

From the above illustrative solutions we were able to conclude that subject to the limitations of 
arithmetic precision and numerical stability our modelling of each individual equation has been 
successful. We now present solution algorithms for the electrolyte flow in charged cylindrical pores 
using equations (1 3)-( 17). 

SOLUTION ALGORITHM 

Two distinct strategic for solution are suggested. The first, which is confined to infinitely long 
capillaries, requires only the PB and Stokes equations, the initial distribution of potential for the PB 
equation being obtained from the DH-P equation. The second, which is generally applicable to all 
geometries, uses the governing equations (1 3)-( 19). The first method is computationally less 
expensive. Since it does not require the solution of at least two extra ionic transport equations, and 
would appear to hold a distinct advantage over the second method. The authors have found that in 
instances of strong non-linearity, arising through a high slipping plane potential ( and possibly in 
conjunction with large ica-values, the PB equation leads to numerically convergent results which are 
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erroneous. To assist in the identification of erroneous solutions, the following weighted residual 
norm12 is independently applied to the solution variables: 

where NH is the number of mesh nodes, a = [ul v, Ql Ch]' and n and n - 1 denote the present and 
previous solutions respectively. Note that the pressure is not included in c1 since it is instantaneously 
satisfied function of the velocity field. Operationally, equation (23) is satisfied when Qnom 5 0 . O O O l .  
Overall convergence within the programme is achieved when the norm is satisfied by all variables. 

PB-S scheme 

1. Solve the DH-P equation for electrical potential using values of bulk concentration as initial values 
and the slipping plane potential as the electrostatic boundary condition. 

2. Solve the PB equation for electrical potential. 
3. Solve the Stokes (and mass conservation) equations for the velocity and pressure field using the 

electrical potential from step 2 and the external gradient Ez. 
4. Continue with steps 2 and 3 until successive solutions for all variables converge. 

The two schemes are summarized below 

NP-P-S scheme 

1. 

2. 
3. 

4. 

5 .  
6. 

Solve the DH-P equation for electrical potential using values of bulk concentration as initial values 
and the slipping plane potential as the electrostatic boundary condition. 
Solve the PB equation for electrical potential. 
Solve the Stokes (and mass conservation) equations for the velocity and pressure field using the 
electrical potential from step 2 and the electrical gradient Ez. 
Solve the NP equation for each ionic species for the total distribution of ionic concentration using 
velocities from step 3 and electrical potentials from step 2. 
Solve the Poisson equation for electrical potential using ionic concentrations from step 4. 
Continue with steps Steps 3-5 until successive solutions for all variables converge. 

In practice, for solutions using the PB-S scheme with a slipping plane potential c = 50 mV and 
dimensionless radius KQ = 5, convergence is achieved within 5-10 iterations. Using the NP-P-S 
scheme for the same binary electrolyte and converged values from the PB-S scheme as seed values 
requires an additional 10 iterations. This represents a computing overhead of about 100%. For 
problems with high non-linearity or an electrolyte with more than two ionic species or both the 
computational overhead can exceed 200%. Clearly the former scheme is computationally attractive; 
however, we subsequently demonstrate that the latter scheme is to be preferred because of its superior 
numerical performance, even in the present simple example of electrolyte flow in capillary pores of 
constant cross-sectional area. 

RANGE OF ACCURACY AND ERROR DETERMINATION 

To examine the numerical performance of each scheme, the bounds of model applicability are 
discussed and summary guidelines are supplied for any future implementation of the numerical 
algorithms. The effects of the two principal factors influencing the non-linearity of the equations, 
namely the slipping plane potential 5 and the dimensionless pore radius KQ, are examined. 

Electrokinetic data and mesh design for the numerical solution have been described previously in the 
section on model validation. The meshes used have equally spaced elements, since it was found that 
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concentrating a similar total number of elements near the slipping plane (in a similar manner to mesh 
designs used for NS transport problemsz1) does not offer any advantage-the overall accuracy is found 
to be reduced. Concentrating elements towards the centreline also results in a loss of some accuracy. 
Since large radial gradients do not exist in the geometries under consideration in the present study, no 
advantage is obtained by using graded meshes. 

As rca is increased for a fixed number of radial elements, the solution either becomes numerically 
unstable or contains unacceptable errors which are manifested as oscillations in the potential 
distribution close to the slipping plane. The solution of the PB or Poisson equation has been identified 
in the present study as the primary source of numerical error. Within both numerical schemes the FE 
solutions of the Stokes equations and associated mass conservation equation perform satisfactorily at 
all times. Similarly the FE solution of the NP equation performs well and only oscillates when supplied 
with unsatisfactory values of electrical potential from the Poisson equation. 

Instability in the PB-S scheme is first notices when the radial distributions of electrical potential are 
seen to possess nodal oscillations-although the solution satisfies convergence criteria. These nodal 
oscillations are unacceptable in the present problem, since the governing equations require a smooth 
decay of electrical potential away from the slipping plane. In instances where either or both slipping 
plane potential and dimensionless radius are large (typically [ > 100 mV and rca > lo), a second 
regime of instability occurs. 

Instability in the NP-P-S scheme differs from that described above. The FE solution of the Stokes, 
mass conservation and NP equations is dependent on the successful FE solution of the Poisson 
equation. Failure of the FE Poisson solution is readily observed as a divergence in successive iterations. 
In contrast with the visual examination necessary to identify nodal oscillations in the FE PB solution, 
the divergence in the FE Poisson solution is easily detected by the weighted error norm (equation (23)). 
In most circumstances the former equations produce apparently convergent solutions. In exceptional 
circumstances (again typically 5 > 100 mV and rca > 10) the FE solution to the NP equation diverges, 
accelerating the instability of the overall solution. 

The onset of instability in the numerically solved electrolyte flow problems of the present study 
suggests a critical ratio between physical and modelling scales which can be expressed as 

where NE, is the number of radial elements. 
The NP-P-S solution method fails to locate a solution when RCit is reached; however, the PB-S 

solution method may appear to locate a solution, but examination of the pointwise potential values 
reveals the aforementioned oscillations. From the above discussion it is clear that the NP-P-S 
algorithm has inherently greater provision for reliable solutions. It has been shown previously (see 
section on model validation) that the potential distributions calculated from the PB or Poisson 
equation differ from the Bessel function solutions even at low slipping plane potentials. The 
maximum differences of the Poisson and PB equation solutions from the Bessel function solutions 
are identical until the onset of instability and this may be used as a convenient datum from which 
we can measure stability. The effect of uniformly increased radial mesh refinement corresponds to 
an extension of the range of solutions in the non-linear zone. Doubling the number of radial 
elements used produces a proportional increase in the ratio Rcit that can be examined. As an 
example, at c=25 mV Rcit  has a value of 5.0 x lo4 (a small margin of safety is included). 

To graphically illustrate the applicability of the model in practical situations, the FE mesh with 50 
equally spaced radial elements is used with various pore radii to examine the influence of slipping plane 
potentials on the scope of possible solution. Bands of stabel solutions for various values of slipping plane 
potential up to the limiting values of Rcit are shown in the stability diagram of Figure 2. 
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Fine mesh 
solution 

Rcrit 
Figure 2. Stability diagram. The shaded area represents the extent of the stability offered by the numerical solution 

In a previous study19 an investigation of the absolute error in the FE solution of the PB equation 
suggests that 

where 5 is the distance between adjacent FE nodes and m' and n' are constants that may be determined 
by comparing FE and exact solutions. In the absence of a more rigorous theory it is assumed that the 
simplest error estimate in the FE solutions developed herein is given by an expression of similar form 
to equation (25). In the present study there is no exact analytical solution which may be used as a basis 
of comparison. Consideration of the error in the FE solutions and the presumed exact solution with the 
aid of Figure 3 allows one to write 

(25)  
I 2n' o = m t  

= o p  + Wine, (26) 
where op is the difference between the fine and coarse mesh solutions and ohe is the error between 
the fine mesh FE solution and the exact solution. 

Assuming that o is determined from an expression analogous to equation (25), the difference 
between the fine and coarse mesh FE solutions is 

op = m y [ *  - (+)''I, , , Coarse mesh 
solution 
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where m and n are as yet undetermined constants and (fine is the fine mesh internodal distance. In 
practice it is easy to choose (fine so that (/( << 1 ,  so that we may write 

op x m(". (28) 
Equation (28) is used as the basis of subsequent error analysis. After taking logarithms, equation (28) 
is transformed to 

In up = In m + n In (. 

If our assumptions are true, then plotting In op as a function of In ( should result in a straight line of 
slope n and with intercept In m on the In 0,-axis. 

A series of numerical experiments was performed wherein the mesh was systematically refined. The 
finest mesh was assumed to facilitiate solution with least error and results using coarse meshes are 
compared with the fine mesh results. We choose potential as the variable for consideration, because 
velocity and concentration fields are linked through the governing equations. Figure 4 shows the 
variation in In cop with In 5 .  The straight line gives experimental confirmation of our assumed model 
for the variation in error with internodal distance. The exponent n in equation (28) is found to be 1.85 
and m = 1.46. Equation (28) is fully satisfied and may be used to predict the order of the FE error. Use 
of the stability diagram in addition to use of the error estimates from equation (28) provides suitable 
controls for our subsequent numerical work. 

(29) 

NUMERICAL RESULTS 

The NP-P-S algorithm is used to generate all the results. The geometry and boundary conditions have 
been previously defined in Figure 1 .  Barium chloride is used (see Table 11) in all examples. 
Dimensionless radial distributions of potential, axial velocity and ionic concentration within a pore are 
presented for a range of C-values in Figures 5-6. Calculations of total and individual ionic fluxes 
through the pore for various ( and xu-values are shown in Figure 7. The ionic strength from equation 
(9) is 1.5 x lop4 M. 

Herein results are presented for values C = -25, -75 and - 125 m\! The slipping plane is located at 
a dimensionless pore radius of ICZ = 4-029 and the axis is at ICY = 0.0. Stability calculations show that a 
100-element uniformly spaced radial mesh is required. The value of the applied field E,, based on 
experimental observations" is 350 V m-'. 

Figure 5 shows the radial distribution of potential (9) and axial velocity (V,) within the pore for 
[ = -25 mV. The potential distribution is exponential, rising from ~ ( K u )  = -0-974 to 
Q(0) = -0.892. The velocity profile indicates that reverse flow is occumng in the centre of the 
pore and the velocity ranges from V~( ICU)  = 0.0 to V,(O) = -4.054 x Evidently the electro- 
osmotic flow is not uniform across the entire pore, reflecting the effect of double-layer overlap which is 
neglected in simple double-layer theory.2 Figure 6 shows the complementary radial distribution of 
dimensionless concentration within the pore. There is a marked difference in the distribution of cations 
and anions. The anionic concentration increases from C-' (KU) = 0.252 to C-'(O) = 0.273, while 

Table 11. Properties of barium chloride 

Cations Anions 

Concentration Mobility Concentration Mobility 
(kmol m-3) Valency (cm2 s-l v - I )  (kmoI m-3) Valency (cm2 s-' V-') 

5 x 2 6.59 1 x 10-4 1 7.91 
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Figure 4. Relative error op as a function of intemodal distance 

the cationic concentration decreases from C+'(rcu) = 2.336 to P 2 ( 0 )  = 1.985. The dimensionless 
bulk concentration of anions, C-'(oo) = 0.667, is not exceeded by the negatively charged ions across 
the whole of the pore. In contrast, the cationic concentration exceeds the bulk value C+'(oo) = 0.333. 
It is apparent that there are significant differences in ionic concentration between the values 
predicted within the pore and those of the bulk electrolyte. 

For ( = -75 mV (see Figure 5) the potential rises from Q(Ku)  = -2.921 to Q(0) = -1.946 and 
the velocity falls from Vz(rcu) = 0.0 to Vz(0)  = -6.33 x The anionic concentration (see Figure 
6) increases from C - ' ( K ~ )  = 0.036 to C-'(O) = 0.0998, while the cationic concentration falls from 

For ( = -125 mV (see Figure 5) the potential rises from Q(icu) = -4.867 to Q(0) = -2.115 
and the velocity falls from V Z ( K U )  to 0.0 to Vz(0) = -2.182 x lop4. The anionic concentration 
(see Figure 6) increases from C-'(rcu) = 0.005 to C-'(O) = 0.080, while the cationic concentration 
falls from C+*(rcu) =5636.416 to C+'(O) = 22.903. 

Consideration of the concentration profiles within the pore (Figures 5 and 6) shows that the space 
charge consists mainly of cations. 

The transport of ions through a pore is determined by integrating the individual fluxes over the 
cross-sectional area. In particular, the total axial ionic flux f in a circular capillary may be found at any 
position along the axis using the expression 

C+'(KU) = 114.75 to C"(0) = 14.875. 

h 

where Nh(r )  is post-computed using equaiton (1) and f h  is the total axial flux of ionic species h 
through the pore. 

Specific ion fluxes are shown for a range of radii and zeta potentials in Figure 7. The range of 
slipping plane potentials investigated is -25 5 C 5 -150 mY The results were produced using 
uniformly spaced radial meshes of varying refinement in accordance with the stability diagram (Figure 
2). The curves illustrate the trend for ion transport through the pore. There is an inverse relationship 
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between the cation and anion fluxes at a particular ( for any Ka-value. Specifically, at a chosen value of 
KU, the higher the zeta potential, the greater is the cation flux and the smaller is the anion flux. The 
percentage cation flux (Table 111) is calculated from 

- f +2 

= l o o f .  

Table I11 shows that at KU = 0.2 there is a significant cationic flux at low zeta potential. This flux 
approaches 100% with increasing c. When KU = 0.0, the cation flux is less pronounced at low 5 but 
replicates the earlier trend at higher c. Consideration of Figure 7 and Table 111 suggests that for 
negatively charged membranes the ion flux at given [ is dependent on the degree of electrical double- 
layer overlap (i.e. KU). 

Table 111. Percentage of cations in total flux (to two decimal places) 

Cation percentage 

i rca = 0.2 Ka = 2.0 KU = 0.4 KU = 0.4 

-25 88.18 87.22 72.62 58.5 1 
-50 99.15 98.76 92.1 1 81.32 
-75 99.92 99.8 1 97.56 92.51 
- 100 99.98 99.95 99.15 97.1 1 
-125 100~00 99.99 99.69 99.03 
-150 100~00 100~00 99.90 99.70 

FINAL REMARKS 

Electrolyte flow through membranes is a complex process dependent on pore geometry, membrane 
material, slipping plane potential and the mobilities of various ionic species present. Herein we have 
presented the equations governing electrolyte flow in a non-dimensional form suitable for numerical 
solution. In general the Peclet number for these flows is less than unity, indicating the dominance of 
ion mobility in the problems studied. The value of Pe is not sufficiently small to neglect the convection 
terms in the flux equations. 

Of the various algorithms investigated, the NP-P-S scheme is found to be the most useful. In the 
PB-S scheme the assumption of a Boltzmann distribution of ions with respect to the wall is valid for a 
cylindrical pore and provides computational advantages. However, the PB-S scheme suffers from 
numerical instabilities and can exhibit an apparent but erroneous convergence, producing inappropriate 
results even for the ideal cylindrical geometry. Errors in the NP-P-S scheme was readily detected 
using the norm (equatioo (23)), and although computationally more expensive, this scheme is 
preferred. 

Investigations into variable-sized element meshes indicate that at least for the present problem a 
regular FE mesh produces the best results. This is clearly an area for future work, especially when 
flows through more complex geometries are investigated. 

The development of a diagram indicating the region of stability of the NP-P-S scheme together with 
a simple analysis of FE errors provides a useful framework for the design of optimal FE meshes. 

The numerical results of the NP-P-S scheme can be readily used to post-compute ion fluxes through 
the pores. This calculation is important when considering the application of membranes in a separation 
process. The ion flux through a pore is shown to be strongly dependent on both zeta potential and pore 
radius. This is an indication of the effects of overlapping double layers. 
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